Tag Archive: spitzer

Using data from NASA’s Great Observatories, astronomers have found the best evidence yet for cosmic seeds in the early universe that should grow into supermassive black holes.

Researchers combined data from NASA’s Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope to identify these possible black hole seeds. They discuss their findings in a paper that will appear in an upcoming issue of the Monthly Notices of the Royal Astronomical Society.

“Our discovery, if confirmed, explains how these monster black holes were born,” said Fabio Pacucci of Scuola Normale Superiore (SNS) in Pisa, Italy, who led the study. “We found evidence that supermassive black hole seeds can form directly from the collapse of a giant gas cloud, skipping any intermediate steps.”

Scientists believe a supermassive black hole lies in the center of nearly all large galaxies, including our own Milky Way. They have found that some of these supermassive black holes, which contain millions or even billions of times the mass of the sun, formed less than a billion years after the start of the universe in the Big Bang.

One theory suggests black hole seeds were built up by pulling in gas from their surroundings and by mergers of smaller black holes, a process that should take much longer than found for these quickly forming black holes.

These new findings suggest instead that some of the first black holes formed directly when a cloud of gas collapsed, bypassing any other intermediate phases, such as the formation and subsequent destruction of a massive star.

“There is a lot of controversy over which path these black holes take,” said co-author Andrea Ferrara, also of SNS. “Our work suggests we are narrowing in on an answer, where the black holes start big and grow at the normal rate, rather than starting small and growing at a very fast rate.”

The researchers used computer models of black hole seeds combined with a new method to select candidates for these objects from long-exposure images from Chandra, Hubble and Spitzer.

The team found two strong candidates for black hole seeds. Both of these matched the theoretical profile in the infrared data, including being very red objects, and they also emit X-rays detected with Chandra. Estimates of their distance suggest they may have been formed when the universe was less than a billion years old

“Black hole seeds are extremely hard to find and confirming their detection is very difficult,” said Andrea Grazian, a co-author from the National Institute for Astrophysics in Italy. “However, we think our research has uncovered the two best candidates to date.”

The team plans to obtain further observations in X-rays and infrared to check whether these objects have more of the properties expected for black hole seeds. Upcoming observatories, such as NASA’s James Webb Space Telescope and the European Extremely Large Telescope, will aid in future studies by detecting the light from more distant and smaller black holes. Scientists currently are building the theoretical framework needed to interpret the upcoming data, with the aim of finding the first black holes in the universe.

“As scientists, we cannot say at this point that our model is ‘the one’,” said Pacucci. “What we really believe is that our model is able to reproduce the observations without requiring unreasonable assumptions.”

Explore the image from this release on HubbleSite (http://hubblesite.org/newscenter/archive/releases/2016/19/).

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program while the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington.

NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission, whose science operations are conducted at the Spitzer Science Center. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado.

Source: NASA Telescopes Find Clues For How Giant Black Holes Formed So Quickly – NASA Spitzer Space Telescope

The last decade has seen a bonanza of exoplanet discoveries. Nearly 2,000 exoplanets — planets outside our solar system — have been confirmed so far, and more than 5,000 candidate exoplanets have been identified. Many of these exotic worlds belong to a class known as “hot Jupiters.” These are gas giants like Jupiter but much hotter, with orbits that take them feverishly close to their stars.

At first, hot Jupiters were considered oddballs, since we don’t have anything like them in our own solar system. But as more were found, in addition to many other smaller planets that orbit very closely to their stars, our solar system started to seem like the real misfit.

“We thought our solar system was normal, but that’s not so much the case,” said astronomer Greg Laughlin of the University of California, Santa Cruz, co-author of a new study from NASA’s Spitzer Space Telescope that investigates hot Jupiter formation.

As common as hot Jupiters are now known to be, they are still shrouded in mystery. How did these massive orbs form, and how did they wind up so shockingly close to their stars?

The Spitzer telescope found new clues by observing a hot Jupiter known as HD 80606b, situated 190 light-years from Earth. This planet is unusual in that it has a wildly eccentric orbit almost like that of a comet, swinging very close to its star and then back out to much greater distances over and over again every 111 days. One side of the planet is thought to become dramatically hotter than the other during its harrowing close approaches. In fact, when the planet is closest to its host star, the side facing the star quickly heats up to more than 2,000 degrees Fahrenheit (1,100 degrees Celsius).

“As the planet gets closer to the star, it feels a burst of starlight, or radiation. The atmosphere becomes a cauldron of chemical reactions, and the winds ramp up far beyond hurricane force,” said Laughlin, a co-author on the Spitzer study, which is accepted for publication in The Astrophysical Journal Letters.

Source: Investigating the Mystery of Migrating ‘Hot Jupiters’ – NASA Spitzer Space Telescope

%d bloggers like this: